4-colorability of P6-free graphs

Ingo Schiermeyer
TU Bergakademie Freiberg
AGH Cracow

Joint work with Christoph Brause, Prěmysl Holub, Zdeněk Ryjáček, Petr Vrána, Rastislav Krivoš-Belluš

Theorem (Randerath, IS, and Tewes, 2002)

The 3 - colorability problem can be solved in polynomial time for P_5 - free graphs.

Theorem (Randerath and IS, 2004)

The 3 - colorability problem can be solved in polynomial time for P_6 - free graphs.

Theorem (Chudnovsky et al., 2014)

The 3 - colorability problem can be solved in polynomial time for P_7 - free graphs.

Theorem (Hoang, Kaminski, Lozin, Sawada, and Shu, 2010)

The k - colorability problem can decided in polynomial time for P_5 - free graphs.

Theorem (Huang, 2013)

The k - colorability problem is NP - complete for the class of P_t - free graphs for all $k \ge 5, t \ge 6$.

The 4 - colorability problem is NP - complete for the class of P_t - free graphs for all $t \ge 7$.

Theorem (Kaminski and Lozin, 2007)

For every $k, g \ge 3$, the k - colorability problem for graphs with no cycles of length at most g is NP-complete.

Theorem (Kaminski and Lozin, 2007)

Let H be a graph containing a cycle. For every k, the k - colorability problem for H - free graphs remains NP - complete.

Theorem (Kaminski and Lozin, 2007)

For every $k \ge 3$, the k - colorability problem for claw - free graphs is NP - complete.

Theorem (Kaminski and Lozin, 2007)

Let H be a graph containing a claw. For every k, the k - colorability problem for H - free graphs remains NP - complete.

Theorem (Kaminski and Lozin, 2007)

Let $k \ge 3$ be an integer, and H a graph. If the k - colorability problem for H - free graphs can be solved in polynomial time, then every component of H is a path.

Theorem (Hoang, Kaminski, Lozin, Sawada, and Shu, 2010)

The k - colorability problem can decided in polynomial time for P_5 - free graphs.

Theorem (Huang, 2013)

The k - colorability problem is NP - complete for the class of P_t - free graphs for all $k \ge 5, t \ge 6$.

The 4 - colorability problem is NP - complete for the class of P_t - free graphs for all $t \ge 7$.

Conjecture (Huang, 2013)

The 4 - colorability problem can be decided in polynomial time for P_6 - free graphs.

Induced subgraphs

Theorem (Randerath, IS, and Tewes, 2002)

Every (P_6, K_3) - free graph is 4 - colorable and there is a polynomial time algorithm for 4 - coloring such graphs.

Theorem (Huang, 2013)

The 4-colorability problem can be solved in polynomial time for the class of (P_6, paw) -free graphs.

Theorem (Lozin and Rautenbach, 2003)

The 4 - colorability problem can be solved in polynomial time for the class of $(P_6, K_{1,r})$ - free graphs for any $r \ge 3$.

Theorem (Huang, 2013)

The 4 - colorability problem can be solved in polynomial time for the class of $(P_6, banner)$ - free graphs.

Theorem (Chudnovsky, Maceli, Stacho, and Zhong, 2014)

The 4 - colorability problem can be solved in polynomial time for the class of (P_6, C_5) - free graphs.

Induced subgraphs

Theorem (BHKRSV, 2015)

The 4-colorability problem can be solved in polynomial time for the class of $(P_6, bull, Z_2)$ -free graphs.

The 4-colorability problem can be solved in polynomial time for the class of $(P_6, bull, kite)$ -free graphs.

Theorem (BHKRSV, 2015)

The 4 - colorability problem can be solved in polynomial time for the class of (P_6, chair) - free graphs.

Rainbow Colourings

